50 research outputs found

    Prediction of Alzheimer's disease pathophysiology based on cortical thickness patterns

    Get PDF
    AbstractIntroductionRecent studies have shown that pathologically defined subtypes of Alzheimer's disease (AD) represent distinctive atrophy patterns and clinical characteristics. We investigated whether a cortical thickness–based clustering method can reflect such findings.MethodsA total of 77 AD subjects from the Alzheimer's Disease Neuroimaging Initiative 2 data set who underwent 3-T magnetic resonance imaging, [18F]-fluorodeoxyglucose-positron emission tomography (PET), [18F]-Florbetapir PET, and cerebrospinal fluid (CSF) tests were enrolled. After clustering based on cortical thickness, diverse imaging and biofluid biomarkers were compared between these groups.ResultsThree cortical thinning patterns were noted: medial temporal (MT; 19.5%), diffuse (55.8%), and parietal dominant (P; 24.7%) atrophy subtypes. The P subtype was the youngest and represented more glucose hypometabolism in the parietal and occipital cortices and marked amyloid-beta accumulation in most brain regions. The MT subtype revealed more glucose hypometabolism in the left hippocampus and bilateral frontal cortices and less performance in memory tests. CSF test results did not differ between the groups.DiscussionCortical thickness patterns can reflect pathophysiological and clinical changes in AD

    Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    Get PDF
    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with DTI deterministic tractography was modeled as a structural network comprising 90 nodes defined by the Automated Anatomical Labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior

    Association of β-Amyloid and Basal Forebrain With Cortical Thickness and Cognition in Alzheimer and Lewy Body Disease Spectra

    Get PDF
    [Objective] Cholinergic degeneration and β-amyloid contribute to brain atrophy and cognitive dysfunction in Alzheimer disease (AD) and Lewy body disease (LBD), but their relationship has not been comparatively evaluated.[Methods] In this cross-sectional study, we recruited 28 normal controls (NC), 55 patients with AD mild cognitive impairment (MCI), 34 patients with AD dementia, 28 patients with LBD MCI, and 51 patients with LBD dementia. Participants underwent cognitive evaluation, brain MRI to measure the basal forebrain (BF) volume and global cortical thickness (CTh), and 18F-florbetaben (FBB) PET to measure the standardized uptake value ratio (SUVR). Using general linear models and path analyses, we evaluated the association of FBB-SUVR and BF volume with CTh or cognitive dysfunction in the AD spectrum (AD and NC) and LBD spectrum (LBD and NC), respectively. Covariates included age, sex, education, deep and periventricular white matter hyperintensities, intracranial volume, hypertension, diabetes, and hyperlipidemia.[Results] BF volume mediated the association between FBB-SUVR and CTh in both the AD and LBD spectra, while FBB-SUVR was associated with CTh independently of BF volume only in the LBD spectrum. Significant correlation between voxel-wise FBB-SUVR and CTh was observed only in the LBD group. FBB-SUVR was independently associated with widespread cognitive dysfunction in both the AD and LBD spectra, especially in the memory domain (standardized beta [B] for AD spectrum = −0.60, B for LBD spectrum = −0.33). In the AD spectrum, BF volume was associated with memory dysfunction (B = 0.18), and CTh was associated with language (B = 0.21) and executive (B = 0.23) dysfunction. In the LBD spectrum, however, BF volume and CTh were independently associated with widespread cognitive dysfunction.[Conclusions] There is a common β-amyloid–related degenerative mechanism with or without the mediation of BF in the AD and LBD spectra, while the association of BF atrophy with cognitive dysfunction is more profound and there is localized β-amyloid–cortical atrophy interaction in the LBD spectrum.Peer reviewe

    Substantia nigral dopamine transporter uptake in dementia with Lewy bodies

    No full text
    Abstract Nigrostriatal dopaminergic degeneration is a pathological hallmark of dementia with Lewy bodies (DLB). To identify the subregional dopamine transporter (DAT) uptake patterns that improve the diagnostic accuracy of DLB, we analyzed N-(3-[18F] fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)-nortropane (FP-CIT) PET in 51 patients with DLB, in 36 patients with mild cognitive impairment with Lewy body (MCI-LB), and in 40 healthy controls (HCs). In addition to a high affinity for DAT, FP-CIT show a modest affinity to serotonin or norepinephrine transporters. Specific binding ratios (SBRs) of the nigrostriatal subregions were transformed to age-adjusted z-scores (zSBR) based on HCs. The diagnostic accuracy of subregional zSBRs were tested using receiver operating characteristic (ROC) curve analyses separately for MCI-LB and DLB versus HCs. Then, the effect of subregional zSBRs on the presence of clinical features and gray matter (GM) density were evaluated in all patients with MCI-LB or DLB as a group. ROC curve analyses showed that the diagnostic accuracy of DLB based on the zSBR of substantia nigra (area under the curve [AUC], 0.90) or those for MCI-LB (AUC, 0.87) were significantly higher than that based on the zSBR of posterior putamen for DLB (AUC, 0.72) or MCI-LB (AUC, 0.65). Lower zSBRs in nigrostriatal regions were associated with visual hallucination, severe parkinsonism, and cognitive dysfunction, while lower zSBR of substantia nigra was associated with widespread GM atrophy in DLB and MCI-LB patients. Taken together, our results suggest that evaluation of nigral DAT uptake may increase the diagnostic accuracy of DLB and MCI-LB than other striatal regions

    NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns

    No full text
    Cerebral cortical folding becomes dramatically more complex in the fetal brain during the 3rd trimester of gestation; the process continues in a similar fashion in children who are born prematurely. To quantify this morphological development, it is necessary to extract the interface between gray matter and white matter, which is particularly challenging due to changing tissue contrast during brain maturation. We employed the well-established CIVET pipeline to extract this cortical surface, with point correspondence across subjects, using a surface-based spherical registration. We then developed a variant of the pipeline, called NEOCIVET, that quantified cortical folding using mean curvature and sulcal depth while addressing the well-known problems of poor and temporally-varying gray/white contrast as well as motion artifact in neonatal MRI. NEOCIVET includes: i) a tissue classification technique that analyzed multi-atlas texture patches using the nonlocal mean estimator and subsequently applied a label fusion approach based on a joint probability between templates, ii) neonatal template construction based on age-specific sub-groups, and iii) masking of non-interesting structures using label-fusion approaches. These techniques replaced modules that might be suboptimal for regional analysis of poor-contrast neonatal cortex. The proposed segmentation method showed more accurate results in subjects with various ages and with various degrees of motion compared to state-of-the-art methods. In the analysis of 158 preterm-born neonates, many with multiple scans (n=231; 26-40weeks postmenstrual age at scan), NEOCIVET identified increases in cortical folding over time in numerous cortical regions (mean curvature: +0.003/week; sulcal depth: +0.04mm/week) while folding did not change in major sulci that are known to develop early (corrected p<0.05). The proposed pipeline successfully mapped cortical structural development, supporting current models of cerebral morphogenesis, and furthermore, revealed impairment of cortical folding in extremely preterm newborns relative to relatively late preterm newborns, demonstrating its potential to provide biomarkers of prematurity-related developmental outcome

    Is antiplatelet treatment effective at attenuating the progression of white matter hyperintensities?

    No full text
    We performed this study to assess the effect of an antiplatelet agent on the progression of white matter hyperintensities (WMH).From August 2003 to May 2005, we consecutively enrolled patients who underwent brain magnetic resonance imaging (MRI) for health check-up purposes and showed no significant findings other than WMH of any degree. Patients were divided into two groups based on whether or not they received antiplatelet therapy. All patients had a follow-up brain MRI after 5 years and WMH volume change was measured using imaging analysis software. To minimize selection bias potentially arising from antiplatelet treatment assignment, analyses were inverse probability weighted.Among the 93 patients who met the inclusion criteria, 54 patients (58.1%) were grouped as the antiplatelet group (AG), and the remaining 39 patients (41.9%) as the non-antiplatelet group (NAG). After inverse propensity weighting, all baseline characteristics were similar between the two groups, and antiplatelet treatment did not show any significant effect on the total WMH volume change (p = 0.957).Antiplatelet medication may not alter the progression of WMH

    Anticancer activity of ginsenosides Rh2 on various cancer cells

    No full text
    Background: This study has mainly focused on finding pharmacological effects of ginsenosides that can reduce the unwanted side effects of the cytotoxic anticancer drugs and are highly effective on prostate cancer, colorectal cancer, liver cancer, hormone-dependent breast cancer, triple-negative breast cancer, and brain cancer (neuroblastoma). Methods: Minor and rare ginsenosides (GS) of Rh2 which have a high absorption ability and excellent pharmacological actions were treated with the 6 different types of cancer cell lines and their anticancer activities were investigated by analyzing gene expressions associated with various cancers through qPCR and other relevant methods. Results: In cancer cells exposed to Rh2, cell viability and cell migration were reduced, and apoptosis was induced. Each cancer cell was divided into three groups according to the cell proliferation response by Rh2; 1) A group in which the cell viability decreases inversely to an increase in Rh2 treatment concentration; 2) A group in which the cell viability rapidly decreases in Rh2 treatment above a certain level of concentration; 3) A group in which the cell viability was not suppressed below 20-30% even with 100 μL of Rh2, the highest concentration used in this study. Conclusions: It was shown that Rh2 has a significant effect on inhibiting the proliferation of prostate cancer cells and hormone-dependent breast cancer cells
    corecore